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Abstract-The discretized pressure-linked equation can be proven to possess a singular coefficient matrix. 
This implies that the pressure solution corresponding to a given velocity would not exist uniess this velocity 
precisely satisfies the continuity equation, In the present investigation, an artificial source term is added to 
the pressure-linked equation. This additional term will generate an extra pressure called the ‘artificial 
pressure’ for each updated velocity to compensate for their nonzero dilation. The use of the artificial 
pressure is equivalent to creating an extra mass for the need of the updated velocity in satisfying the 
continuity equation. This treatment guarantees the existence and uniqueness of the pressure solution such 
that the pressure can be directly solved without recourse to the conventional pressure correction equation. 
Based on the concept of artificial pressure, the APPLE (A~i~cial Pressure for Pr~sure-Linked Equation) 
and the NAPPLE (Nonstaggered APPLE) algorithms are developed for incompressible flows. Through 
two well-known examples, the APPLE algorithm is found to produce essentially the same results with only 
about 40% CPU time as compared with the SIMPLER algorithm. Due to its simplicity, the NAPPLE 
algorithm has a potential use for problems with arbitrarily shaped domain as long as the grid size is not 

large. 

INTRODUCTION 

THE MAJOR difficulty in calculating an incompressible 
flow seems to lie in the unknown pressure gradient. 
Mathemati~lly speaking, the pressure solution 
should be defined such that the continuity equation is 
satisfied. Unfortunately, there is no obvious equation 
for the pressure field. Among the early efforts on 
solving this problem, Patankar and Spalding [l] pro- 
posed a method known as the SIMPLE (Semi-Implicit 
Method for Pressure-finked Equations) algorithm. 
The SIMPLE algorithm converts the continuity equa- 
tion successfully into a direct algorithm for the pres- 
sure solution. However, it needs a heavy under- 
relaxation in general and thus poses a rather slow 
convergence rate. To enhance the efficiency of the 
SIMPLE algorithm, a few SIMPLE-like algorithms 
such as SIMPLER [2, 31, SIMPLEC 141, SIMPLEST 
[5], PISO [6] and FIMOSE [7] have been developed. 

It is noted that the SIMPLE algorithm and its vari- 
ants [2-71 all need a pressure correction equation. In 
addition, all of them should be ~rfo~ed on stag- 
gered grid systems [8]. Although the use of a staggered 
grid could avoid producing an uncontrollable 
checkerboard pressure, it introduces some incon- 
veniences when the algorithms are applied on a physi- 
cal domain having an arbitrary shape. To remedy 
these difficulties, Rhie and Chow [9] proposed the 
pressure-weighted interpolation method (PWIM) 
such that the SIMPLE algorithm could be applied on 
a nonstaggered grid system. A subsequent study by 
Peric [lo] confirmed this observation. Unfortunately, 
the solution provided by PWIM [9, lo] depends on 
the value of the underrelaxation factor (or the size of 
the virtual time step) as pointed out by Patankar [ 111. 

Although this subtle drawback can be improved by 
employing some particular interpolation techniques 
[12, 131, the PWIM could produce physically imposs- 
ible convective velocity especiahy in a region where 
the pressure gradient has a rapid variation. This point 
has been well discussed by Miller and Schmidt [13]. 

In the present investigation, the characteristics of 
the pressure-linked equation are examined in detail. 
An artificial source term then is added to the pressure- 
linked equation to generate an extra pressure to com- 
pensate for the nonzero dilation of an updated 
velocity. For convenience, the extra pressure will be 
referred to as the ‘artificial pressure’ in the present 
investigation. The use of the artificial pressure can 
be proven to provide a sufficient condition for the 
existence of the pressure solution such that the pres- 
sure can be directly solved without recourse to a pres- 
sure correction equation. This new numerical tech- 
nique is called the APPLE algorithm. With a minor 
revision, the NAPPLE algorithm is proposed for 
nonstaggered grid systems. The performances of 
both algorithms will be compared with that of the 
SIMPLER algorithm [2, 31 through two well-known 
examples. 

CHARACTERISTICS OF THE PRESSURE- 

LINKED EQUATION 

For simplicity, the characteristics of the pressure- 
linked equation will be demonstrated through a two- 
dimensional Aow on Cartesian coordinates with a uni- 
form grid system. As in ref. [14], the dimensionless 
conservation equations for a two-dimensional incom- 
pressible flow can be written as 
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NOMENCLATURE 

[a (Ri matrix and vector defined in Greek symbols 
equation (10) ,, pseudo-conductivity defined by equatron 

(1, h weighting t”xtors in the momentum (5c) 
equation (4) and in the pressure A ditrerencc quantity 
equation (24) i: dilation of the tluid 

N,,, h, elements of matrix [A] and vector [B) il pseudo-dilation of the fluid defined by 

CIK right-hand side of equation (4) equation (Yb) or (23b) 
(’ proportional constant of the artificial 0 dimensionless temperature 

source time step parameter, At/(Ax)’ 

.i%’ 

a vector defined by {F) = if?) + [G]{j} i source term of pressure Poisson equation 
Nth element of vector {Fi (29) 

[Cl a matrix having only two nonzero 11, stream function 
diagonals, [L][ U] - [A] (1) vorticity. 

[Ll a lower triangle matrix having only four 

nonzero diagonals 

N total number of grid points Superscript 
n number of grid points in x- or J- * matrix elements after a complete 

coordinates forward Gaussian elimination 

P dimensionless pressure procedure. 

li guessed pressure 

P.1 pressure at the Nth point 
Pr Prandtl number Subscripts 
Ra Raylcigh number E, S, W, P quantity at points E, S, W and P 
RCJ Reynolds number defined in Figs. 1 and 2 

bl 
dimensionless time e, n, s. w quantity at points e, n. s and w 
an upper triangle matrix with only four defined in Figs. I and 2 
nonzero diagonals N quantities at point N defined in Figs. I 

u, I’ dimensionless velocities in x- and y- and 2 or quantities at the Nth grid 

direction, respectively point 
6, I: pseudo-velocities defined by equation x, I‘, t differentiations with respect to x. ,r 

(5b) and I, respectively 

x, _I’ system of coordinates. 0 quantities at the time t-At. 

u, +z:, = 0 

1(,+uu,+L!u,. = -,D+ j&,trc,,) 

1 (z’,, +2’,,1 I’, + UV, f IX:, = --p, + i; 

(1) 9-13, 151. For convenience, equation (4) is rewritten 
as 

(2) up = ti, --“urX(LJp/c?x), (5a) 

& = ‘ip(aw~,+a,u,+a,u,+a,~,-(I,) (5b) 
(3) 

I’P = -(l/6). (5c) 

where u, = riu/?x, u) = au/@, u, = Bujdt, etc. Upon 
discretizing the x-momentum equation (2) at point P 
by using an implicit numerical scheme such as the 

power-law scheme [3] and the weighting function 
scheme [ 151, one obtains 

where the subscripts W, E. S, N denote quantities at 
the nearest neighbor grid points of point P lying, 
respectively, to the west, east, south and north of point 
P. The definition of the weighting factors a,, uE, a,, 
uN and up can be found elsewhere [15]. The factor uR 
is the source term excluding the pressure gradient. 
Such a notation system has been well accepted [l-7, 

Figure 1 shows a staggered grid system for an 

[-_I;-r-r-I 

:rj$j~jrT 
AX 

FIG. 1, Notations for staggered grid system 
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incompressible flow. The white nodes are for physical 
quantities such as pressure, temperature, concen- 
tration, etc. Each black node with a horizontal arrow 
is for the velocity component a while that with a 
vertical arrow is for u. As in equation (5) dis- 
cretization of the x-momentum equation at points e 
and w yields the two algebraic equations 

4 = fi, -YC(WWC (6a) 

4v = c,-yW(ap/ax),. (6b) 

Similarly, the discretized y-momentum equations at 
points n and s are expressible as 

a” = t’” -Yn(W~Y),, (7a) 

0, = 6, -Ys(WW,. (7b) 

Next, substitute equations (6) and (7) into the dis- 

cretized continuity equation 

h--u, L’,-vu, 

AX i-F= 
0 

for point P. After rearrangement, the continuity equa- 

tion (8) becomes the pressure-linked equation 

where 

2 = (~2, - z&)/Ax + (8, - B,)/Ay (9b) 

denotes 

and the pseudo-dilation of the flow E^ is not necessarily 
zero. Although equation (9a) is derived for a grid 

point away from the boundary, it is equally applicable‘ 
for boundary grids. For instance, if point w is located 
at a boundary with a known velocity u,, equation 
(6b) will be still valid by assigning li, = u, and yW = 0. 

Using the pressure-linked equation (9) instead of 
the continuity equation seems to be a clever idea for 

incompressible flows. Unfortunately, there are serious 
numerical difficulties in solving equation (9) due to the 
fact that the pressure-linked equation has a singular 
coefficient matrix when it is discretized in the matrix 
form 

L4{PI = {B). (10) 

The determinant of coefficient matrix [A] can be 
proven to be zero by employing the property 

,$, aij = 0 (11) 

where ai, denotes the elements of matrix [A] and N is 
the total number of grid points. This singular 
coefficient matrix might have caused a ‘very slow con- 

vergence rate’ for the solution as encountered in many 

previous studies [2]. 

CONCEPT OF ARTIFICIAL PRESSURE 

The pressure-linked equation (9) or (10) indeed is 
identical to a heat conduction with given heat gen- 

eration and boundary heat flux, if p, y and -E^ are 

regarded as temperature, thermal conductivity and 
heat generation, respectively. The solution thus does 

not exist unless the boundary heat flux precisely 
balances the heat generation. This sufficient condition 

for the existence of the pressure solution is equivalent 

to the compatibility condition needed in the pressure 
Poisson formulations [16-191. In practical com- 

putations for incompressible flows, iterations are 

undertaken to update the velocity solution from the 
momentum equations with a guessed pressure field. A 

pressure solution corresponding to this velocity then 

is solved from the pressure equation. For an updated 
velocity, however, it can be proven that the com- 
patibility condition holds only when this particular 

velocity ‘happens’ to satisfy the continuity equation. 

Unfortunately, this coincidence is very difficult to 
meet for an updated velocity due to numerical errors. 

In the present study, an artificial source term is 
added to the right-hand side of equation (9a) to force 
the pressure solution to exist for each updated 

velocity. Such an artificial source could generate an 
extra pressure to compensate for the nonzero dilation 

of the updated velocity as mentioned earlier. 
However, it should be noted that the use of an artificial 

source forces only the overall mass conservation law 
to hold inside the whole flow domain. Its distribution 
thus is not necessarily uniform. In the present study, 
the pressure equation is assumed of the form 

$2) + $(;$) = I-e,.?, (12) 

where e]s] is the artificial source. This assumption is 
made on three reasons. First, there is no need to 
correct the pressure for a particular location where the 

continuity equation has been satisfied (E = 0). Second, 
the artificial pressure source should have a single sign 
(either positive or negative) over the entire physical 

domain to minimize the magnitude of the required 
artificial source. Third, an artificial source that is a 
linear function of the updated velocity was found to 
provide good numerical stability. Hence, the dis- 
tribution of the artificial source is assigned pro- 

portional to ]a] with the proportional constant e. The 
constant e will be defined such that the compatibility 
equation is always satisfied. The artificial source 
is expected to vanish if the source term E^ precisely 
balances the boundary pressure gradient. 

Now, let equation (12) be discretized in the matrix 
form 
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or 

[u,,](p,) = (b,j -c;lc,lj. (13b) 

After applying a complete forward Gaussian clirn- 

ination, equation (13b) becomes 

which has the last row fi = Nj 

(15) 

where a& = 0 due to the singularity of the coefficient 

matrix [A]. It is important to note that without the 
use of the artificial source (e = 0), equation (15) will 

become trivial and the value of P1, can be arbitrarily 
assigned if the values of 6: ‘happen’ to be zero. Other- 
wise, the pressure solution will not exist. 

The requirement of bg = 0 for the existence of the 

pressure solution seems to perfectly reflect the need of 
the compatibility condition. To compensate for the 
nonzero bz value arising from the numerical error in 
each updated velocity, the e-value is assigned by 

e = b$k;. (161 

It appears from equation (16) that no artificial source 

will be needed if the condition 63 = 0 holds. Once the 
constant e is determined, the two vectors on the right- 
hand side of equation (14) can be added together. 

Next, assign an arbitrary constant to pN and then 
perform a backward Gaussian elimination to obtain 
the pressure solution. 

In the present formulation, the constant e is deter- 

mined through the procedure of a direct Gaussian 
elimination. Fortunately, this can be accomplished 
also in an iterative solver such as the SIS solver [20]. 
In the use of the *SIS solver, a matrix [G] having 
only two nonzero diagonals is added to the original 

coefficient matrix [A] such that the new coefficient 
matrix becomes [A]+[G] = [y[U]. where [L] is a 
lower triangle matrix with only four nonzero diag- 
onals while [U] is an upper triangle matrix having 

only three nonzero diagonals and a central diagonal 
of unity. Let j? be a guessed pressure solution, then 
equation (13a) can be rewritten as 

(17) 

where {F) denotes the vector {B) -i- [G] {p”). The defi- 
nition of the matrix [G] can be found in ref. [ZO]. Next, 

perform a forward subtraction on equation (17) to 
yield 

[W4 = {F*j -eb*) (18) 

where {F*j = [L]-‘(F) and {E*) = [L]-‘{l&lj. Note 
that the last algebraic equation of the matrix equation 
(18) is 

pN =,f’$ ---E&g (19) 

where pni is an arbitrarily prescribed constant. The 
value of e thus can be defined to meet the compatibility 
equation (19), that is e = (,f$ -P~)/E$. Finally, renew 

the prcssurc solution by making a backward Gaussian 
elimination. This procedure should be iterated unlii 
the solution converges. Obviously, the c-value woult! 
>ary from one iteration to another. Once the prcssurc 

solution converges, however, it will approach thesamc 

constant as that produced from equation (16) based 

on the direct Gaussian elimination procedure. This 
same technique can also be implemented in cvn- 

ventional solvers such as the SOR line-by-lint and the 

ADI methods. 
It is important to note that the primitive pressure 

does not appear in the governing equations (i)-(3). 
It always shows up in the derivative form. This implies 
that the sum of p and an arbitrary constant is also a 

solution if p is a solution. Such a situation seems to be 
perfectly reflected in the present numerical procedure 

that allows pN to have an arbitrary value known as 
the pressure level [ 141. If a pressure level (say, 11~ = 0) 

is assigned, the pressure solution will uniquely exist. 
Hence, the pressure solution can be directly solved as 
described in this section without recourse to the 
conventional pressure correction equation [I 7, 

9---l 31. 
For convenience, the procedure of the APPLE 

(Artifical Pressure for Pressure-Linked Equation) 

algorithm is summarized as follows. 

(I) Guess the velocity (u, r) and the pressure p. 
(2) Based on the guessed velocity, evaluate the 

weighting factors (aw. Us,, etc.) and the pseudo- 
velocity d and 1;. 

(3) Starting with the guessed pressure, perform u 
j&t’ SIS iterations on equation (17). This yields a 
pressure solution corresponding to the guessed 

velocity. 
(4) Employ an SOR factor to modify the guessed 

pressure with the pressure solution obtained in step 3. 

(5) Based on this modified guessed pressure, solve 
the momentum equations (4) with one SIS iteration 
to renew the velocity (u, L:). 

(6) If the solution (u. c, p) converges within a 
prescribed tolerance, then stop the computations. 

Otherwise, modify the updated velocity with an SOR 
factor and treat it as a new guessed velocity, then 
return to step 2 and repeat the entire computational 

procedure. 

Strictly speaking, in step 3, the SIS solver should 
be iteratively performed on equations (17) until the 

pressure solution converges. The SOR factor used 
here could be as large as I .0-l .2, because the pressure 
equation (12) is linear. This procedure is equivalent 
to performing a direct Gaussian elimination on the 
pressure equation. However, the guessed velocity 
might be not quite accurate before the solution con- 
verges. Thus, it is not necessary to obtain a completely 
converged pressure in step 3. In practical problems, 
only a few (say 10) SIS iterations are needed. In 
general, the optimum SOR factor is in the range of 
0.3-0.5 in step 4 for the pressure and in the range of 
0.1-0.3 in step 6 for the velocity. 



Pressure-linked equation 2709 

THE NAPPLE ALGORITHM 

With a minor revision, the APPLE algorithm can 
also be performed on a nonstaggered grid system. 
Figure 2 shows a nonstaggered grid system with a 
conventional notation for the grid points. The symbol 
Ax, is the grid size in x-coordinate while Axi denotes 
(Ax,_ , + Ax,)/2. Let the momentum equations be dis- 
cretized at points E, W, N, S and the continuity equa- 
tion be discretized at point P. This gives 

UE = C? -YE (@lax) E (20a) 

u ii, w= -Yw(QlJX), (20b) 

(2Oc) 

(204 

and 

!e+%&o. 
I 2AYj 

(21) 

As in the previous section, substituting equations (20) 
into equation (21) and making the assumption 

one obtains the pressure-linked equation 

E^ = (ti, - li,)/(2z,) + (& -Q/(2Ayj) (23b) 

where e and w are the middle points of the line seg- 
ments PE and WP, respectively. The finite difference 
equation for equation (23a) is expressible as 

&p, f&p, + ‘& + b,pN + b’b = b 

hv = ~wl(Axi~ ,W> b, = Y,/@wW 

b = Y~/(AY/~ IAY,)~ & = Ynl(AY,Ayj) 

b, = -b,-b,-b,-bN, b, = &. (24) 

As mentioned earlier, the coefficient yE = - (l/up), is 

/-%-t-i-j 

I 

FIG. 2. Notations for nonstaggered grid system. 

equivalent to the ‘thermal conductivity’ at point E if 
the pressurep is regarded as a temperature. However, 
y is not a real material property. It comes from the 
coefficient of a finite difference equation and thus 
could have abrupt values from one grid point to 
another. Due to the lack of further reliable infor- 
mation, the value of ye is evaluated from the harmonic 
mean of yp and yE, i.e. 

Ye = -2/](ap)p+ GGM. (25) 

In the use of equation (24) care must be exercised 
at the grid points adjacent to a boundary if the size of 
the boundary grid is large. For instance, when point 
W is located on the boundary, yw could have a zero 
value as demonstrated in the previous section. This 
will result in yw = 0 such that the mass flow between 
points W and P is ignored. Fortunately, this error can 
be remedied by employing the interpolation method 

ti, = (li,+tir)/2 

% = (uw + UP)/2 (26) 

such that the weighting factor b, in equation (24) 
becomes zero and the pseudo-dilation $ is 

& = (6, + li, -up - uw)/(2Gi) + (a, - 8,)/(2Ay,). 

(27) 

However, this treatment is not necessary if the grid 
size is sufficiently small along the boundaries. For 
convenience, this new method will be referred to as 
the NAPPLE (Nonstaggered APPLE) algorithm. Its 
computational procedure is the same as that of the 
APPLE algorithm described in the previous section. 

PERFORMANCES OF THE NEW ALGORITHMS 

In this section, the performances of the APPLE and 
the NAPPLE algorithms will be examined through 
two well-known examples. The results obtained by 
using the present algorithms are compared with that 
based on the SIMPLER algorithm [2, 31 and the 
stream-vorticity formulation. Example 1 is conduc- 
ted to study the efficiencies of the APPLE and the 
NAPPLE algorithms for a viscosity-driven flow in a 
square cavity. In example 2, a natural convection 
inside a square enclosure is employed to test the per- 
formances of both new algorithms in the presence of 
buoyancy term. Generally speaking, a good initial 
guess helps solution convergence in solving highly 
nonlinear problems like examples 1 and 2. A poor 
initial guess might even lead to a divergent result. For 
unsteady flows, the solution at the previous time step 
(to = t-At) makes a good initial guess for the solu- 
tion at the present time t as long as the time step At 
is not large. In steady flows, however, the solution 



proccdurc usually has to start from an actually 
guessed soluGon. Therefore. solving a steady flow is 
more difficult than solving an unsteady flow in prac- 
tical applications. For this reason. no example for 
unsteady Row is attempted in the present study. 

Ekumple I . Viscrrsit?-~lricen. f(ol~ inside 61 syuuw fwit~ 

Consider a two-dimensional incompressible flow 

inside a square cavity. The lid of the cavity (I, = I) 
moves at a constant speed in the s-direction while the 

other three walls .Y = 0. .Y = I and J‘ = 0 are main- 
tained stationary. A circulating Aow thus is induced 

inside the cavity due to viscous force. Such a cir- 

culating flow is governed by equations (l)-(3) subject 
to the boundary conditions 

II=o,r=O at.r=O,.u=l.~~=o (28a) 

I, = I. I’ = 0 at I‘= I. (28b) 

To solve this circulating flow, a staggered uniform 

grid system with (n- 1) x (n- 1) control volumes is 
employed for both SIMPLER and APPLE algor- 
ithms. Such a grid system possesses II x (n- I) 
grid points for each of the momentum equations (2) 
and (3). In the use of the NAPPLE algorithm, all of 

the variables II. I’ and p are determined on a non- 

staggered uniform grid system with n x n grid points. 
All of the differential equations in this example are 
solved by the weighting function scheme [15] and the 
SIS solver [20] for the parameter of RP = 400. 

Figure 3(a) reveals the results of ~(0.5, ,v) based on 
the APPLE and SIMPLER algorithms for various 

grid resolutions (12 = 41, 61 and 81). The result 
obtained by the stream-vorticity method [21] with a 
sufficiently fine grid (n = 129) is also plotted in Fig. 

3(a) as a benchmark. Similar information is provided 
in Fig. 3(b) for L’(s, 0.5). The physical significance of 
Fig. 3 has been well discussed in the literature. Thus, 

it is not repeated here to conserve space. 
It is noteworthy that on staggered grid systems, the 

pressure equation (9) is an exact combination of the 
discretizcd momentum equation (4) and the dis- 
cretized continuity equation (8). This implies that the 
exact solution of the algebraic equations (4) and (9) 

will automatically satisfy the discretized continuity 
equation (8). In the solution procedure of the APPLE 
algorithln. the use of the artificial source P/E/ is only 

to help the solution convergence. Once the solution 
converges, both the artificial source +I and the 
dilation of the velocity JcJ will disappear. In the 
SIMPLER algorithm. the pressure correction equa- 
tion is solved to correct only the velocity. Instead 
of being updated from the pressure correctness, the 
pressure solution is estimated from the updated vel- 
ocity by applying an iterative solver on the pressure 
equation for only one or a few iterations. Such a 
strategy does not accumulate errors to the pressure 
solution and thus could produce a converged velocity 
field if the velocity is not very sensitive to the pressure 
gradients in the momentum equations. Like the 
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FIG. 3. (a) The ~(0.5, _v) results provided by APPLE, 
SIMPLER and I&W methods with various grid resolutions 
for example 1. (b) The &u, 0.5) results provided by 
APPLE, SIMPLER and $~-ru methods with various grid 

resolutions for example 1. 

APPLE algorithm. the SIMPLER algorithm also pro- 
vides converged velocity of zero dilation. Due to the 
fact that both converged velocities based on the 
APPLE and the SIMPLER algorithms satisfy the 

same algebraic equations (4) and (8), the dif%rence 
between them was found to be within the tolerance of 

the convergence criterion. Hence, the same curves are 
employed to represent both results in Fig. 3. This 

is important evidence that the concept of artificial 
pressure can be used instead of the pressure correction 
equation without losing accuracy. 

In the derivation of the discretizcd continuity equa- 
tion (8), a central finite difference scheme was 
employed. Due to the truncation error, equation (8) 
could be not quite accurate in some particular 
locations where the velocity profile has a large cur- 
vature. This can be clearly observed from the hori- 
zontal velocity ~(0.5, y) near y = 0.3 in Fig. 3(a) and 
the vertical velocity a(.~, 0.5) near x = 0.87 in Fig. 
3(b). Nevertheless, the results produced by both 
APPLE and SIMPLER algorithms approach the 
‘exact’ solution [21] when the number of grid points 
increases from n = 41 to n = 8 1. The accuracy in the 
above-mentioned locations can be further improved 
by increasing the grid resolution. 

As expected, the CPU time needed by the APPLE 



Pressure-linked equation 2711 

algorithm in example I is only about 40% of 
that required by the SIMPLER algorithm. Other 
SIMPLE-like algorithms such as SIMPLEC [4] and 
PISO [6] show similar behaviors as exhibited by the 
SIMPLER algorithm. The high efficiency of the 
APPLE algorithm seems to come from two reasons. 
First, unlike the SIMPLE algorithm and its variants 
12-7, 9--131, the APPLE algorithm solves the pressure 
solution directly without the need of solving an 
additional pressure correction equation. Second, the 
existence and uniqueness of the pressure solution due 
to the use of artificial pressure brings about a fast 
convergence rate for the APPLE algorithm. 

It is important to note that during the iterations, 
the pressure solution does not exist in the sense of 
numerical analysis due to its singular coefficient 
matrix and the nonzero dilation of the updated 
velocity. Therefore, the pressure solution cannot be 
really obtained without employing a technique equi- 
valent to the artificial pressure. In the SIMPLE algo- 
rithm 11, 21, a pressure correctness is added to the 
pressure solution in each iteration. Such an attempt 
to obtain a converged pressure solution thus will 
undoubtedly fail. This might account for the fact that 
the solution is very difficult to ‘convergence’ in the use 
of the SIMPLE algorithm. In the SIMPLER 
algorithm, the solution procedure is terminated as 
long as the dilation Ic( is below a prescribed tolerance. 
No converged pressure solution is attempted. In many 
practical applications, unfortunately, the pressure 
gradient shows significant influences on the velocity. 
Under such situations, using the SIMPLER algorithm 
it would be very difficult to produce converged results 
as encountered in many previous studies [l l] owing 
to the lack of an accurate pressure solution. In 
addition, the SIMPLER algorithm will fail also if one 
uses the direct Gaussian elimination method to solve 
the pressure equation. Fortunatety, the APPLE algo- 
rithm poses none of these difficulties. 

The APPLE algorithm seems to possess good per- 
formances for incompressible flows. However, its 
application is restricted to staggered grid systems. On 
nonstaggered grid systems, the continuity equation is 
very difficult to convert into a pressure equation. This 
is simply because on nonstaggered grid systems no 
velocity solution is known at the control surfaces (u,, 
u,> t‘,, z?,) as demonstrated in Fig. 2. To circumvent 
this difliculty, a pressure-weighted interpolation for 
these particular velocities known as PWIM has been 
employed by previous investigators [9, 10, 12, 131. 
However, the interpolation procedure used in PWIM 
introduces a numerical error of ~((A.x)*) into the 
velocities such that the resulting pressure equation is 
no longer an exact combination of the discretized 
momentum equation and the discretized continuity 
equation. Therefore, the dilation of the velocity will 
not vanish even though the solution has perfectly con- 
verged. It would be even worse in the PWIM for- 
mulation that the nonzero dilation is multiplied by a 
relaxation factor. For this reason, the solution pro- 

duced by PWIM depends on the relaxation factor as 
pointed out by Patankar [I I], although the depen- 
dence might not be so significant under some par- 
ticular treatments [12,13]. Unfortunately, these treat- 
ments could give rise to a physically impossible 
velocity in a region where the pressure gradient has a 
rapid variation [ 133. 

Logically, the undesired feature of nonzero dilation 
on nonstaggered grid systems is unavoidable. Such a 
numerical difficulty seems to exist also in the pressure 
Poisson formulation [8, 16-191 that satisfies the con- 
tinuity equation indirectly. In this branch of method- 
ology, an explicit scheme is employed to extrapolate 
the velocity solution from the momentum equation. A 
pressure solution corresponding to this extrapolated 
velocity then is generated by solving a pressure 
Poisson equation in the form 

prr+pYY = o-8, = a+&lAt (29) 

where D = ~(u,G’,,-D,u,,), t is a virtual time coordinate 
and E, = (E, -E)/A~. In equation (29), the dilation E, 
in the time level r+At has been assigned zero. It should 
be noted that the virtual time step At in equation 
(29) is equivalent to the relaxation factor of implicit 
schemes. Its value is prescribed. The pressure solution 
thus will depend on At unless the converged velocity 
is free of nonzero dilation. In explicit schemes, as 
remarked by Ghia et al. [16], the dilation approaches 
a constant rather than zero at convergence even 
though the compatibility condition is well satisfied. 
This is simply because the compatibility condition 
emphasizes only the global mass conservation. No 
zero local dilation is guaranteed. For this reason, solu- 
tions based on pressure Poisson equation and explicit 
scheme are all At-dependent. To clarify this point, 
example 1 is resolved by using the pressure Poisson 
method proposed by Biringen and Cook [19]. The - 
‘converged’ average dilation /E/ and the correspond- 
ing virtual unsteady term l&At/ are presented in Fig. 4 
for various virtual time steps and grid resolutions. 

As observable from Fig. 4, for a given grid resol- 

l/At 

FIG. 4. The residual of the continuityequation mm and 
the corresponding virtual unsteady term le/Atl produced by 
conventional pressure Poisson equation [ 191 for example 1, 



ution, increasing the value of l!Ai2t decreases the 
dilation 1~1 . This will achieve a better accuracy for 
the solution. However, increasing the grid resolution 
at a given virtual time step is not necessary to improve 
the solution accuracy, For instance. at 1 iAt = lo’, the 
residual dilation is I;[ = 4.34x 1O--4 for n = 51 as 
compared to IE( = 1.45 x IO ’ for n = 31. This inter- 
esting phenomenon seems to arise from the inherent 
numerical instability of the explicit scheme. In the 
explicit scheme, the accuracy of the solution depends 
very strongly on the time step parameter i = Ar/(Ax)‘. 
The solution will even diverge if the parameter A 
exceeds its critical value. Hence. the maximum pas+ 
ible time step would reduce to one quarter of its 
original size if the grid size AX has to be halved. At 
1 /At = IO’, the grid resolution n = 5 I corresponds to 
1 = 0.025, while II = 3 I has a J-value as small as 0.009. 
This means that fine grid system possesses large i- 
value and thus does not necessarily provide better 
accuracy for the solution. 

In the formulation of the NAPPLE algorithm, the 
approximation (22) is made to modify the Laplace 
operator such that no interpolation is needed for the 
velocities at the control surfaces. However, this par- 
ticular treatment also introduces a truncation error 
into the discretized continuity equation (21). For- 
tunately, unlike l/At in the pressure Poisson for- 
mulation, the e-value appearing in the artificial source 
is not a prescribed parameter. Hence, the converged 
solution provided by the NAPPLE algorithm is inde- 
pendent of the SOR factor needed in the SIS solver, 
even though the dilation of the converged solution is 
nonzero. In fact, the artificial source el~l depends only 
on the truncation error. Its value vanishes when the 
grid size approaches zero. This will be demonstrated 
later. 

Figures 5(a) and (b) show, respectively, the velocity 
~(0.5, ,v) and v(x, 0.5) produced by the NAPPLE 
algorithm on a nonstaggered uniform grid system of 
n x n points. As mentioned in the previous paragraph, 
the converged velocity is independent of the SOR 
factor. For convenience of comparison, the results of 
Ghia ct al. [21] are also plotted in Fig. 5. From Figs. 
3 and 5, one sees that for n = 41 the accuracy of the 
NAPPLE algorithm is not as good as that of the 
APPLE algorithm due to the use of the approximation 
(22). Fortunately, when the step size is reduced as 
n > 81, the discrepancy between the results produced 
by APPLE and NAPPLE algorithms seems negligible. 

Figure 6 reveals the pressure distribution cor- 
responding to the velocity shown in Fig. 5. This pres- 
sure result is provided by the NAPPLE algorithm 
on a nonstaggered grid system of 81 x 81 points. As 
described in equation (281, the physical domain is 
defined in the region of 0 < x f 1 and 0 < J < t . For 
convenience, the isobars in Fig. 6 are plotted with 
the pressure level p(l, 1) = 0 and an increment of 
Ap = 0.02. Essentially the same pressure result was 
obtained by using the APPLE algorithm. 

Figure 7 shows the ‘converged’ average dilation Fr 
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FIG. 5. (a) The ~(0.5, p) results provided by the NAPPLE 
algorithm with various grid resolutions for example 1. (b) 
The t:(.u, OS) results provided by the NAPPLE algorithm 

with various grid resolutions for example I. 

and its corresponding average artificial source -elsl 
for various n-values due to the approximation (22) 
employed in the NAPPLE algorithm. It should be 
noted that the ‘mass source’ defined in conventional 
SIMPLE-like algorithm [2] is &AX A_Y. Hence, 
c = 10m2 is equivalent to a mass source of lo- ‘, if the 
grid size Ax = A_Y = 0.01 is used. As expected, both 
(~1 and -ele\ have decreasing magnitudes when the 
truncation error is reduced by increasing the number 
of the grid points (the n-value). This means that the 

y=o 

FIG. 6. The pressure distribution produced by the NAPPLE 
algorithm with n = 81 for example 1. 
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21 41 61 81 101 121 
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FIG. 7. The residual of the continuity equation (~1 and 
its corresponding artificial source/sink required by the 

NAPPLE algorithm for example 1. 

NAPPLE algorithm can be expected to produce 
accurate results as long as the grid size is sufficiently 
small. The excellent agreement between the results of 
the APPLE and the NAPPLE algorithms as observ- 
able from Figs. 3 and 5 for n > 81 seems to sub- 
stantiate this point. This important behavior of the 
NAPPLE algorithm is different from that of the pres- 
sure Poisson formulation. As mentioned earlier, when 
the grid size decreases, the pressure Poisson formu- 
lation could produce poorer results due to an 
increased time step parameter 1. 

Example 2. Natural convection inside a square enclosure 
The conservation equations for the natural con- 

vection inside a rectangular enclosure are expressible 
as the dimensionless form 

U, + VI = 0 

204, + L’U,. = -py + Pr(u,, + u,) 

Wa) 

(3Ob) 

uv, + vu,. = -p, + Pr(v,, + vy,,) + Ra Pr 6’ (30~) 

ue, + U0, = B,, + e,,. (304 

The associated boundary conditions are 

u = v = 0, 0 = 0.5 atx=O 

u = 1’ = 0, 0 = -0.5 at x = 1 

u=v=O, %?/ay=O aty=O and y=l. 

(31) 

As in example I, the APPLE, NAPPLE and 
SIMPLER algorithms are employed to solve equa- 
tions (30) and (31) on a uniform grid system for 
the case of Pr = 0.7 and Ra = IO’. The numerical 
procedures for each of these algorithms are the same 
as their counterparts in example 1. The only difference 
is that example 1 deals with a moving plate while 
example 2 studies the effect of the buoyancy term 
Ra Pr f?. This same problem was also solved by using 
the stream-vorticity (+u) formulation. The solution 
based on the I+-w method seems to converge when 
the number of the grid points is larger than 

n x n = 241 x 241. This result will be regarded as the 
‘exact’ solution. 

Figures 8(a) and (b) show, respectively, the numeri- 
cal results of ~(0.5, y) and v(x, 0.5) obtained by the 
APPLE and the SIMPLER algorithms with n = 41, 
81 and 121 and the stream-vorticity formulation with 
n = 241. Again, the results produced by APPLE and 
SIMPLER algorithms are essentially the same such 
that the same curves are used to present both results 
in Fig. 8. In this example, the natural convection is 
driven by the buoyancy force Ra Pr 0 that appears in 
the source term of equation (30~). After discretizing 
equation (~OC), the right-hand side coefficient aR in 
equation (4) is found proportional to the size of the 
control volume (i.e. (Ax)’ in the present case), while 
the coefficients a,, aE, etc., are in order of unity. 
Hence, the solution accuracy for buoyancy-driven 
flows can be effectively improved by reducing the grid 
size. 

Figure 8 reveals that both APPLE and SIMPLER 
algorithms produce good results when the number of 
the grid points is larger than 8 1 x 8 1. As in the forced 
flow case, however, higher grid resolution is needed 
to improve the solution in some particular locations 
where the curvature of the velocity profile is large. For 
the case of low Rayleigh number, the curvature of the 
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FIG. 8. (a) The 40.5, y) results provided by APPLE, 
SIMPLER and $+IJ methods with various grid resolutions 
for example 2. (b) The u(x, 0.5) rest& provided by 
APPLE, SIMPLER and $+x methods with various grid 

resolutions for example 2. 
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velocity protile is gcnemlly small. Under this situation, 
very accurate results can he achieved even on a coarse 
grid system. For instance, based on a 41 x41 grid 
system, both APPLE and SIMPLER algorithms pro- 
vide a velocity soiution with a maximum error of 
below 0.5% for Ru = IO’. 

The results of ~(0.5. ,I*) and P(_x, 0.5) based on 
the NAPPLE algorithm and 17 = 81, 121 and 161 arc 

presented in Figs. 9(a) and (b), respectively. The ‘exact’ 
solution based on the $-(1, formulation with II = 241 
is also plotted in Fig. 9 for ~onlparison. It is noted 

that in the formulatioI1 of the NAPPLE algorithm, 

the continuity equation is discretized on a control 

volume having the size of 4A.ujA_),, (see equation (21)). 
In addition, the approximation (22) is used to avoid 

a checkerboard error for the pressure solution. These 
treatments undoubtedly will introduce a truncation 
error into the pressure solution. Nevertheless, this 

error can be expected to be negligible if the grid size 
is sufficiently smail. Like the cavity Aow in exampie f, 
the buoyancy-driven Row predicted by the NAPPLE 
algorithm is essentially the same as that by the APPLE 

algorithm when the number of grids is no less than 
8 I x 8 1. This can be observed by comparing the results 

in Fig. 9 with their counterparts in Fig. 8. Therefore, 
it is believed that the truncation error arising from 
equations (21) and (22) in the USC of the NAPPLE 

Y 
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0.4 PFo.7, R&o 
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FIG. 9. (a) The ~(0.5, y) results provided by the NAPPLE 
algorithm with various grid resolutions for example 2. (b) 
The u(.x. 0.5) results provided by the NAPPLE algorithm 

with various grid resolutions for example 2. 
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algorithm is dominated by the size of the control 
volume. In many practical situations, small grids cyui- 
valenr to n = 81 are generally needed to obtain a good 
resolution for the solution. Under such a situation. 
the truncation error arising from equations (21) and 
(22) would be essentially negligible as compared with 

errors from other modes. As a iinal note. it is mcn- 
tioned that the programming of the NAPPLE algo- 

rithm is very simple because it is performed on non- 
staggered grid system. Due to its simplicity, the idea 

of the NAPPLE algorithm can be easily extended and 
performed on curvilinear coordinates for arbitrarily- 

shaped domains. 

CONCLUSION 

The discretized pressure-linked equations can be 
proven to possess singular coefficient matrix. The 

pressure solution corresponding to a given velocity 
thus would not exist unless this velocity precisely sat- 
isfies the continuity equation. This might be the major 

reason why the pressure solution is very difficult to 
solve as reported by many previous investigators. For- 
tunately, through the use of the concept of artificial 
pressure proposed in the present study, uniqueness 
and existence of the pressure solution arc guaranteed 

for each updated velocity. In addition. the pressure 
lcvet is allowed to be arbitrarily assigned. Based on 
the concept of artificial pressure, the APPLE and 
NAPPLE algorithms arc proposed for incompressible 
flows. Both new algorithms directly solve the pressure 

equation without recourse to the conventional prcs- 
sure correction equation. The perfortnances of both 
algorithms are examined through a forced convection 

example and a natural convection example inside a 
square enclosure. From these two well-known cxam- 

pies. the APPLE algorithm was found to produce 
essentially the same results with only about 40% CPU 
time as compared with the SIMPLER algorithm. 
This means that the concept of artificial pressure can 
be used instead of the conventional pressure cor- 

rection equation without Losing accuracy. For both 
examples, the truncation error due to the approxi- 
mations made in the NAPPLE algorithm for non- 

staggered grids is seen to be negligible as long as the 
grid size is sufficiently small. Due to its simplicity. 
the NAPPLE algorithm can be easily extended and 

performed on complicated problems such as a thrce- 
dimensional flow with an arbitrarily-shaped domain. 
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PRESSION ARTIFICIELLE POUR DES EQUATIONS LIEES A LA PRESSION 

Rbsum&L’equation disc&is&e like a la pression possede tme matrice singuliere de coefficient. Ceci imphque 
que la solution de pression correspondant a une vitesse donnee n’existe pas a moins que cette vitesse 
satisfasse l’equation de continuite. Dans cette etude, un terme source artificiel est ajoute dans I’equation 
Ii&e a la pression. Ce terme genere une extra-pression appelee ‘pression artificielle’ pour chaque vitesse. ce 
qui est equivalent a la creation d’une extra-masse afin de satisfaire I’tquation de continuitt. Ce traitement 
garantit I’existence et I’unicite de la solution de pression de faGon a rtsoudre directement la pression sans 
avoir recours a I’equation de correction de pression conventielle. Bases sur le concept de pression artificielle, 
les algorithmes APPLE et NAPPLE sont developpes pour Ies fluides incompressibles. A travers deux 
exemples bien connus, I’algorithme APPLE fournit les memes resultats avec seulement 40% du temps CPU 
en comparaison avec I’algorithme SIMPLER. Par sa simplicite, NAPPLE a une potential&C pour resoudre 

les problemes sur des domaines de forme arbitraire si la maille n’est pas trop large. 

KUNSTLICHER DRUCK IN EINER DRUCKABHANGIGEN GLEICHUNG 

Zusammenfassung-Es kann gezeigt werden, da0 die diskretisierte druckabhangige Gleichung eine sing&ire 
Koeffizientenmatrix besitzt. Daraus ergibt sich, da13 zu einer gegebenen Geschwindigkeit eine Losung fur 
den Druck nur dann existiert, wenn die Kontinuitatsgleichung exakt erfiillt ist. In der vorliegenden Arbeit 
wird in die druckabhangige Gleichung ein kiinstlicher Quellterm eingefiigt. Dieser Zusatzterm erzeugt 
einen zusatzlichen Druck, einen sogenannten “kiinstlichen Druck”, urn bei jeder neu berechneten Gesch- 
windigkeit deren Nullpunktsabweichung zu eliminieren. Die Verwendung eines Zusatzdruckes entspricht 
der Erzeugung zusitzlicher Masse zur Erfiillung der Kontinuititsgleichung. Hierdurch wird die Existenz 
und Eindeutigkeit der Losung fiir den Druck garantiert, und die tibliche Rekursionslijsung wird iiberfliissig. 
Auf dem Konzept des kiinstlichen Druckes basierend wurden zwei Algorithmen, APPLE und NAPPLE, 
fur inkompressible Striimungen entwickelt. Mit Hilfe zweier wohlbekannter Beispiele wird gezeigt, dab 
APPLE im Vergleich zum SIMPLER-Algorithmus bei nahezu gleichen Ergebnissen nur 40% CPU Zeit 
benotigt. Wegen seiner Einfachheit kann der NAPPLE-Algorithmus auf Probleme bei beliebig geformten 

Berandungen angewandt werden, solange die Gitterweite nicht zu groI3 ist. 
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“WCKYCCTBEHHOE” AABJIEHME B YPABHEHHM &BI4XEHHR 

~~a~~Mo~Ho AoKa3arb, ~0 ~~K~T~3~~Ba~~ ypaBHeHHe, CoAep~auee AaB~eHHe, HM~~T 

c~~rynKp~y~ bfaTpsiay Ko~~~~eHToB. 3~0 03Ha9aeT. ST0 perrreHas Ann xaB2ewiK, C~~TB~T~TBY~~- 

IJJel-0 J&aHH@i CXOpOCTH,He 6yAeTCynwTBOBaTb,eCnrt CXOpOCTb He 6yAeTTOVHO YAOBneTBOpKTbypaB- 

fiewuoHepa3pbIBHocTH.B HacTosufebfaccneAoBawin ~ypaBHeHae~nn Aasnewia~BoAH~c~cnaraebfoec 
ACKyCCTBeHHbIM WTOYHUKOM, KOTOpOe IIpLiBO~HT K II36bITo'iHohq TLK Ha3bIBlleMONy "WCKyCCTBeHHO- 

My- nasneemo nJtK Kamqoro 3HaSeHHI CKOPOCTH, KOMneHCHpyHJIIIeMy OTJIHYHOe OT Hynn o6aemioe 

pZUJ.IHpeHHe. klCIIOJlb3OBEUIHe "IiCKyCCTBeHHOrO" ~aBJIeSi&il PaBHOqeHHO C03JWHHlO AOIlOJIHHTenbHOti 

MaCCbI C TOii UeJlbW, YT06bI HOBOe 3Ha'ieHBe CKOPOCTH yAOBAeTBOp5LlIO ypaBHeHHl0 Hepa3pblBHOCTH. 

&WIJIO9eHHblfi IIOAXOA 06ecnewiBaeT CyIWCTBOBaHlie Ii eAIiHCTBeHHOCTb peUIeH&iK AJtXAaBneHWl,TaK 

YTO AaBAeHBe MOZOiO OIIpeA&WTb HeilOC$EACTBeHHO. Ha OCHOBe KOHWXWiwW "EiCKyCZTBeHHOrO" ALiBJIe- 

nNK pa3pa6oTan~ ~o~~TM~ APPLE (ncXy~BeHHoe AaBneH~e ~ns ypasrreaar, coAepxa4ero 

~aBAeH~e)~ NAPPLE(He~~p~BH~APPLE)~B H~~~MaeM~x TereH&i.Ha AB~X ~~TH~x~~H~~- 

pax noKa3aHo,9TO anropwrM APPLE AaeT Bbiwpbtw BO BpeMeHa 40% no cpasHeHwto c ~A~O~HTMOM 

SIMPLER. sJIarOAapSI CBOeii IipOCTOTe aJEOp&iTM NAPPLE MOXCeT W2nOnb30BaTbCI AJIK peIIIeHkiB 


